CODEN RIBAEG ISSN 1330-061X (print), 1848-0586 (online)

FISH DIVERSITY IN THE SOUTHERN COASTAL WATERS OF BANGLADESH: PRESENT STATUS, THREATS AND CONSERVATION PERSPECTIVES

Md Abu Hanif¹, Muhammad Abu Bakar Siddik¹*, Md Reaz Chaklader¹, Ashfaqun Nahar², Sultan Mahmud³

¹Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh ²Department of Marine Fisheries and Oceanography, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh

³Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh

*Corresponding Author, E-mail: siddik@pstu.ac.bd

ARTICLE INFO	ABSTRACT
Received: 20 May 2015 Received in revised form: 4 October 2015 Accepted: 6 November 2015 Available online: 13 November 2015	Despite the enormous anthropogenic and environmental hazards affecting wild fisheries resources, southern coastal waters are still considered one of the aquatic biodiversity hotspots in Bangladesh. Therefore, the present study was conducted to make a complete account of fishes and to assess their condition and conservation status in the rivers spread across four southern coastal districts of Bangladesh. During the study period from January to December 2014, a total of 98 species of fish were recorded belonging to 81 genera, 48 families and 13 orders. Perciforms were recorded as the most diverse fish group in terms of both number and individuals of species observed. Of the 98 species, 26.53% were listed as Locally Threatened in Bangladesh, including 11.22% species listed as Vulnerable, 10.20% as Endangered and 5.10% as Critically Endangered. Four population indices viz, Shannon-Wiener index (H), Simpson's dominance index (D), Simpson's index of diversity (1-D) and Margalef's index (d) were applied to demonstrate the species diversity, richness and evenness of fish in sampling areas and their overall values were 3.54-3.70, 0.04-0.05, 0.95-0.96 and 7.48-8.67, respectively. To sustain the prospect of fisheries biodiversity in the southern coastal areas of Bangladesh, management and conservation strategies like restocking economically important fish species, establishing and maintaining fish sanctuaries, banning indiscriminate fishing and destructive fishing gears, identification
IUCN	and protection of the breeding and nursery grounds should be taken into
Conservation	consideration with utmost priority.
How to Cite	Hanif, M. A., Siddik, M. A. B., Chaklader, M. R., Nahar, A., Mahmud, S. (2015): Fish diversity in the southern coastal waters of Bangladesh: present status, threats and conservation perspectives. Croatian Journal of Fisheries, 73, 148-161. DOI: 10.14798/73.4.848

INTRODUCTION

The southern coastal rivers of Bangladesh are categorized by high levels of commercial fish catch which has direct contribution to the economy of the country (Islam, 2003; Sharker et al., 2015a). However, nowadays the riverine systems of southern Bangladesh have suffered from intense tourism and human intervention resulting in habitat loss and degradation, and as a consequence, wild fish populations have seriously declined in rivers and streams of this vast area (Sarkar et al., 2012; Siddik et al., 2013). The main causes behind the loss of fish diversity are over-exploitation augmented by various ecological changes and degradation of natural habitats, water abstraction, rampant installation of industries, introduction of exotic species, pollution and global climate change which led to the endangerment of

© The Author(s) 2015. Published by University of Zagreb, Faculty of Agriculture. All rights reserved.

many species, including endemic fishes (Rao et al., 2014; Sharker et al., 2015b; Siddik et al., 2014). Moreover, sporadic measurement of water salinity along coastal fringe indicates intrusion of saline water in many areas (Khan et al., 2006). Anecdotal evidence also indicates that increased saltwater intrusion from the Bay of Bengal into the coastal region poses an imminent threat to coastal ecosystems and their biodiversity (Khan et al., 2006). As a result, a total of 54 fish species of Bangladesh have been declared as threatened by IUCN Bangladesh (2013) of which 12 species are recorded as critically endangered, 28 species are endangered and the remaining 14 species are vulnerable. This situation clearly indicates the need of detailed biodiversity study is imperative to assess the present status and sustainable management of water resources in southern Bangladesh (Galib et al., 2013; Siddik et al., 2013).

A scientific understanding of different management strategies to conserve biodiversity, fish abundance along with their natural distribution is essential to back up their optimum exploitation (Fu et al., 2003; Prpa et al., 2007; Eros and Scmera, 2010; Rao et al., 2014). Diversity index provides more information than simply the amount of species present in a particular waterbody which acts as an important tool that gives pivotal information on scarcity and commonness of species in a community. Over the decades, substantial research has been done on the systematics, biogeographical and ecological aspects of the inland fishes in the coastal areas of Bangladesh. However, actions to conserve fish biodiversity in the rivers are lacking. In this study, we attempt to collect information on fish biodiversity in the southern coastal areas of Bangladesh. The purposes of the present study were (1) to characterize the status of fish biodiversity; (2) to review the main threats to fish biodiversity; and (3) to provide recommendations for fish biodiversity conservation.

MATERIALS AND METHODS

Study area

The survey extended for one year from January to December 2014 in order to collect fishery data in four southern central coastal districts of Bangladesh. They are Pirojpur, Bhola, Patuakhali and Barguna located between latitude 21°47' to 22°52' North and longitude 89°02' to 90°55' East (Fig. 1). Previous statistics (Hossain et al., 2012; Chowdhury et al., 2010) indicates that fish catch is relatively high in full moon and new moon, and therefore sampling schedule was made considering the time of full moon and new moon of southern Bangladesh. Data were collected from various sites especially from fish sellers in fish markets, fishing spots and questionnaire discussion with fishermen in fishermen at the fishing spots. However, species which seemed difficult to identify at a fishing spot were preserved

in 7 to 10% buffered formalin solution and transported to the Laboratory of the Faculty of Fisheries, Patuakhali Science and Technology University, Bangladesh, for identification and further study.

Water characteristics in study areas

A wide range of salinity fluctuation (0.20-17.58 ppt) is recorded in four coastal districts of southern Bangladesh and it varied from location to location and season to season. Maximum water salinity was observed in pre-monsoon, whereas minimum was in monsoon for entire four costal districts. It was noticed that water salinity started increasing from post-monsoon and continued to increase in premonsoon, when it reached the highest level. The highest (19.8 ppt) water salinity was measured in pre-monsoon at the Andarmanik River, Kalapara in the Patuakhali district, while the lowest (0.2 ppt) was in monsoon at the Swarupkati River in the Pirojpur district.

Identification of the fishes

Fish fauna collected from the study areas were identified based on their morphometric and meristic characters following Rahman (2005) and Eschmeyer (2014). After identification, fish species were systematically classified

Fig 1. MAP showing the study area of four coastal districts in southern coastal region of Bangladesh

Table 1. Biodiversity and conservation status of fish fauna recorded at four southern coastal districts of Bangladesh for a
period of one year from January to December 2014 (see Appendix 1)

Ordor	Family	Spacias	English name	Conservation Status	
Order	Failiny	species	English hame	Bangladesh*	Global**
Anguilliformes	Muraenesocidae	Congresox talabon	Yellow pike conger	NO	NA
Aulopiformes	Synodontidae	Harpadon nehereus	Bombay duck	NA	NA
		Anodontostoma chacunda	Chacunda gizzard shad	NA	NA
		Gudusia chapra	Indian river shad	NO	LC
	Ciupeidae	Tenualosa ilisha	Hilsha	NA	NA
Church if a marked		Tenualosa toli Toli shad		NA	NA
Clupelformes	Dussumieriidae	Dussumieria elopsoides	Slender rainbow sardine	NA	NA
	Engraulidae	Coilia neglecta Neglected grenadier anchovy		NA	NA
	Engraulidae	Setipinna phasa	Gangetic hairfin anchovy	NO	LC
	Pristigasteridae	Pellona ditchela	Indian pellona		LC
C marine e de satife mas es	Deleniidee	Xenentodon cancila	Needle fish	NA	LC
Cyprinodontiformes	Beloniidae	Dermogenys pussilus	Wrestling halfback	NA	LC
		Amblypharyngodon mola	Mola carplet	NO	LC
		Barbonymus gonionotus	Silver barb	EX	LC
		Catla catla	Catla	NO	LC
		Cirrhinus mrigala	Mrigal carp	NO	LC
	Cyprinidae	Ctenopharyngodon idella Grass carp		EX	LC
		Cyprinus carpio var. communis	Common carp	EX	LC
		Cyprinus carpio var. specularis	Mirror carp	EX	LC
		Esomus danricus	Flying Barb	NO	LC
		Hypophthalmichthys molitrix	Silver carp	EX	NT
Cypriniformes		Labeo gonius	Kuria labeo	EN	LC
		Labeo calbasu	Orangefin labeo	EN	LC
		Labeo rohita	Roho labeo	NO	LC
		Labeo pangusia	Pangusia labeo	CR	LC
		Labeo bata	Bata labeo	EN	LC
		Mylopharyngodon piceus	Black Chinese roach	EX	LC
		Osteobrama cotio	Cotio	EN	LC
		Systomus sarana	Olive barb	CR	LC
		Puntius sophore	Pool barb	NO	LC
		Pethia ticto	Ticto barb	VU	LC
	Cobitidae	Lepidocephalichthys guntea	Guntea loach	NO	LC
		Chelon suviridis	Greenback mullet	NA	LC
Mugiliformes	Mugilidae	Chelon parsia	Gold-spot mullet	NA	LC
		Rhinomugil corsula	Corsula mullet	NO	LC
Octoorlocsiformer	Notoptoridae	Chitala chitala	Humped featherback	EN	NT
Osteoglossiformes	Notopteridae	Notopterus notopterus	Grey featherback	VU	LC

© The Author(s) 2015. Published by University of Zagreb, Faculty of Agriculture. All rights reserved.

Table 1. Continued

				Conservation Status		
Order	Family	Species	English name	Bangladesh*	Global**	
	Ambassidas	Chanda nama	Elongate glass perch	VU	LC	
	Ambassidae	Parambassis ranga	Indian glassy fish	VU	LC	
	Anabantidae	Anabas testudineus	Climbing perch	NO	DD	
	Belontiidae	Trichogaster fasciata	Striprd gourami	NO	LC	
	Carangidae	Scomberoides tol	Needlescaled queenfish	NA	NA	
		Channa marulius	Giant snakehead	EN	LC	
	Channidaa	Channa gachua	Asiatic snakehead	VU	NA	
	Channidae	Channa punctata	Spotted snakehead	NO	LC	
		Channa striata	Banded snakehead	NO	LC	
	Cichlidae	Oreochromis mossambicus	Mozambique tilapia	EX	NT	
		Oreochromis niloticus	Nile tilapia	EX	LC	
	Drepaneidae	Drepane punctata	Spotted sicklefish	NA	NA	
	Eleotridae	Elotris fusca	Dusky sleeper	NA	LC	
		Apocryptes bato	Mudskipper	NA	NA	
	Gobiidae	Glossogobius giuris	Tank goby	NO	LC	
		Taenioides anguillaris	Eel worm goby	NA	LC	
	Latidae	Lates calcarifer	Seabass	NA	NA	
	Lobotidae	Labotes surinamensis	Tripletail	NA	NA	
Perciformes	Lutjanidae	Lutjanus madras	Indian snapper	NA	NA	
	Nemipteridae	Nemipterus japonicus	Japanese threadfin bream	NA	NA	
	Nandidae	Nandus nandus	Nandus nandus Mud perch		LC	
	Polynemidae	Eleutheronema Fourfinger threadfin tetradactylum		NA	NA	
		Polynemus paradiseus	Paradise threadfin	NO	NA	
	Scatophagidae	Scatophagus argus Spotted butterfish		EN	LC	
		Johnius argentatus	Silver jew	NA	NA	
	Sciaenidae	Johnius carutta	Karut croaker	NA	NA	
		Nibea soldado	Silver jew	NA	NA	
		Euthynnus affinis	Mackerel tuna	NA	LC	
	Scombridae	Katsuwonus pelamis	Skipjack tuna	NA	LC	
		Pelamys chiliensis	Pacific bonito	NA	LC	
	Stromateidae	Pampus chinensis	Chinese pomfret	NA	NA	
	Sillaginidae	Sillaginopsis panijus	Lady fish	NA	NA	
	Siganidae	Siganus javus	Streaked spinefoot	NA	NA	
	Sparidae	Acanthopagrus chinshira	Yellowfin seabream	NA	NT	
	Trichiuridae	Trichiurus mutica	Ribbon fish	NA	NA	
Rajiformes	Dasyatidae	Himantura bleekeri	String ray	NA	VU	
Scorpaeniformes	Platycephalidae	Platycephalus caeruleopunctatus	Bluespotted flathead	NA	NA	

Orden	Family	Creation		Conservation Status	
Urder	Family	Species	English name	Bangladesh*	Global**
	A util da a	Arius gagora	Gagora catfish	DD	NT
	Ariidae	Ketengus typus	Bigmouth sea-catfish	NA	NA
		Sperata aor	Long-whiskered catfish	VU	LC
		Mystus cavasius	Gangetic tengra	VU	LC
	Bagridae	Mystus tengara	Tengra mystus	NO	LC
		Mystus vittatus	Striped river catfish.	NO	LC
		Rita rita	Rita	CR	LC
	Clauiidaa	Clarias magur	Air breathing catfish	NO	LC
	Clariidae	Clarias gariepinus	African sharptooth catfish	NO	LC
Sliuriformes	Plotosidae	Plotosus canius	Gray eel-catfish	VU	NA
	Heteropneustidae	Heteropneustes fossilis	Stinging cat fish	NO	LC
	Loricariidae	Hypostomus plecostomus Sucker mouth catfish		EX	NA
	Pangasiidae	Pangasianodon hypophthalmus	Siamese shark	EX	EN
		Pangasius pangasius	River pungus	CR	LC
		Ailia coila	Gangetic ailia	VU	NT
	Schilbeidae	Clupisoma garua	Garua bachcha	CR	LC
		Silonia silondia	Silond catfish	EN	LC
		Ompok pabda	Pabdah catfish	EN	NT
	Siluridae	Wallago attu	Freshwater shark	NO	NT
Synbranchiformes		Macrognathus aral	One striped spiny eel	VU	LC
	Mastacembelidae	Macrognathus pancalus	Striped spiny eel	NO	LC
		Mastacembelus armatus	Tire track eel	EN	LC
Totradontiform	Balistidae	Abalistes stellaris	Trigger fish	NA	NA
recracionchormes	Tetraodontidae	Leiodon cutcutia	Gangaetic puffer fish	NO	LC

Table 1. Continued

Note: CR-Critically Endangered, EN- Endangered, VU- Vulnerable, NT-Near Threatened, NO-Not Threatened, LC- Least Concern, DD- Data Deficient, NA- Not Assessed and EX-Exotic. According to * IUCN Bangladesh, 2013 and ** Eschmeyer, 2014.

Data Analyses

Shannon–Wiener index (H) is an insensitive measure of the character of the S:N (total number of individuals of one species and total number of individuals of all species) relationship and is dominated by the abundant species. The diversity index was calculated by using the Shannon–Wiener diversity index (1949).

Shannon-Weaver diversity index (H),

$$H = -\Sigma Pi \ln Pi$$

Where, Pi = S / N

S = number of individuals of one species

N = total number of all individuals in the sample

Evenness is a measure of the relative abundance of different species making up the richness of an area, which is measured

by using the following formula:

$E = e^H/S$

Simpson's dominance index (D) is often used to quantify the biodiversity of habitat which takes into account the number of species, as well as the abundance of each species. Formula used for calculating is:

$D = \Sigma ni(ni-1)/N(N-1)$

Where, *ni* is the total number of individuals of a particular species and *N* is the total number of individuals of all species. Margalef's index (d) (Margalef, 1968) was used to measure species richness by the following formula:

d = (S-1/Ln N)

Where, *S* is the number of species and *N* is the number of individuals in the sample.

© The Author(s) 2015. Published by University of Zagreb, Faculty of Agriculture. All rights reserved.

RESULTS AND DISCUSSION

The present study on fish diversity in the southern coastal waters of Bangladesh recorded a total of 98 fish species including 10 exotic species and 5 native carps. The conservation status of these species along with their order, family and English name are presented in Table 1.

The percent composition of families, genera and species under various orders are placed in Table 2. The dominant order was Perciformes comprising 35.71% of all the number of species recorded. Nearest dominant orders were Cypriniformes, Siluriformes and Clupeiformes comprising 20.41%, 19.39% and 8.16%, respectively. Anguilliformes, Aulopiformes, Rajiformes and Scorpaeniformes were the least dominant species, comprising 1.02% individually. The maximum number of fish species in the study was recorded during the winter season. This is because of water depth reduced to the minimum level due to insufficient rainfall during this time, allowing fishermen to utilize their fishing gears more effectively. Similar outcome was also reported by Rao et al. (2014) who has recorded the highest fish diversity in winter. The lowest numbers of species were recorded during the month of June and July due to heavy rain during this time which makes fishing very difficult as water level reached its maximum level. Moreover, the order Perciformes was found to be the most diversified fish group in terms of both number of species and individuals recorded, followed by Cypriniformes and Siluriformes. These three groups are also the most dominant groups in freshwater bodies of Bangladesh (Rahman, 2005).

In the present study, the dominant family was Cyprinidae comprising 19 species (Table 1), which was about 19.39% of the total number of species caught. Other diversified families were Bagridae (5.15% species), Clupeidae, Channidae and Schilbeidae (4.12% species each), and Mugilidae, Sciaenidae, Scombridae and Mastacembelidae (3.09%), respectively. Cyprinidae represented major contribution with large number of species in respect to numerical composition in different open water bodies reported by Ahsan et al. (2014) and Rao et al. (2014), which supports the findings of the present study. 12 exotic species were recorded under the order of Cypriniformes, Perciformes and Siluriformes during the study period. The exotic species were grass carp (Ctenopharyngodon idella), silver carp (Hypophthalmichthys molitrix), Thai sharpunti (Barbonymus gonionotus), Common carp (Cyprinus carpio var communis), mirror carp (Cyprinus carpio var specularies), black carp (Mylopharyngodon piceus), tilapia (Oreochromis mossambicus), nilotica (Oreochromis niloticus), sucker mouth catfish (Hypostomus plecostomus) and Thai pangas (Pangasianodon hypophthalmus). Furthermore, the order Perciformes was found to be the most dominant fish group in terms of total number of individuals observed. Maximum of 97 species were recorded from the Patuakhali district, 95 from the Pirojpur district, and from Barguna and Bhola 85 and 82, respectively (Table 3). Within the collected fish samples, critically endangered data were the highest in the Patuakhali and Pirojpur districts each containing 5 in numbers, and the lowest in Bhola and Barguna (both were 2). The endangered species are highest in Patuakhali and

Table 2.	Number and percent southern coastal wa	composition of ters of Banglade	f families, gene esh	ra and species	under variou	s orders of fishe	s recorded in the	;
Order		No. of family	No of genera	No. of species	% Family	% Genera	% Species	

Order	No. of family	No. of genera	No. of species	% Family	% Genera	% Species
Anguilliformes	1	1	1	2.13	1.23	1.02
Aulopiformes	1	1	1	2.13	1.23	1.02
Clupeiformes	4	7	8	8.33	8.64	8.16
Cyprinodontiformes	1	2	2	2.08	2.47	2.04
Cypriniformes	2	14	20	4.17	17.28	20.41
Mugiliformes	1	2	3	2.08	2.47	3.06
Osteoglossiformes	1	2	2	2.08	2.47	2.04
Perciformes	23	30	35	47.92	37.04	35.71
Rajiformes	1	1	1	2.13	1.23	1.02
Scorpaeniformes	1	1	1	2.13	1.23	1.02
Siluriformes	9	16	19	18.75	19.75	19.39
Synbranchiformes	1	2	3	2.13	2.47	3.06
Tetradontiformes	2	2	2	4.17	2.47	2.04

Pirojpur comprising 10 each, whereas in Bhola and Barguna the species numbers were 9 and 8, respectively. The vulnerable species were highest in Patuakhali and Pirojpur (both were 11), while Bhola and Barguna consisted of 10 and 9 in number, respectively (Fig. 2).

Table 3. Total number of species and specimens recorded including exotic species and native carp from southern coastal waters of Bangladesh

Study Area	Total number of species (S)	Total number of individuals (N)	Exotic species	Native carp
Pirojpur	95	65323	10	5
Bhola	82	50261	9	5
Patuakhali	97	64163	9	5
Barguna	85	44885	9	5

Fig 2. Number of species under different categories of threat as per IUCN 2013 in the coastal waters of Bangladesh

Diversity index, richness and evenness

The district-wise values of Shannon-Wiener index (H), Simpson's dominance index (D), Simpson's index of diversity (1-D) and Margalef's index (d) are shown in Fig. 3. However, considering all the specimens studied during the period of study, the values of Shannon-Wiener index (H) were higher in Patuakhali (about 3.70) than Pirojpur (3.64), and lower in Bhola and Barguna (both were 3.54). Evenness (E) was higher in Bhola and Patuakhali (each 0.42), and Barguna (about 0.41) and lower in Pirojpur (about 0.40) (Fig. 4). Average richness within 13 orders, perciformes were shown higher and range from 0.15 to 0.12. Nearest orders, including cypriniformes (0.08 to 0.09), siluriformes (0.07 to 0.08) and clupeiformes (0.03 to 0.04) and Tetradontiformes, showed the lowest value which was almost nil in the Bhola and Barguna districts (Fig. 5).

Fig 3. Different fisheries diversity index at sampling site of four coastal districts in Bangladesh

Fig 4. Evenness of fish diversity in four coastal districts of Bangladesh

Fig 5. Average species richness under various orders in four coastal districts of Bangladesh

The value of a diversity index increases when both the number of species and evenness increases in a population. The value of the Shannon-Wiener index (H) usually ranges from 1.5 to 3.5 for ecological data and hardly exceeds 4.0, which is mostly related with our calculated data. May (1975) stated that if species follow a normal abundance distribution, the sample must have to hold 100,000 species for Shannon-Wiener index (H) to be greater than 5.0. Simpson's dominance index (D) value ranges from 0.05-0.04 and Simpson's index of diversity (I-D) depends on Simpson's dominance index (D). This partial difference may be due to the temporal variation of dominance status among all sampling areas. The Margalef's index (d) of richness value ranges from 7.48-8.67, which is not much different from Hossain et al. (2012) who recorded maximum Margalef's index (d) of 6.75 and lowest of 6.10. Diversity index and richness showed that diversity of fish species was higher in the district of Patuakhali and lower in Bhola. Figure 4 shows that the fish species of Patuakhali and Bhola are more similar than the Pirojpur and Barguna districts. Simpson's dominance index (D) is heavily weighted towards the most abundant species in the sample, while being less sensitive to species richness. Simpson's index of diversity (I-D) was higher in the Patuakhali and Pirojpur districts than in other districts. Though a number of studies on the biodiversity of fishes have been conducted around the world (Goswami et al., 2012; Rixon et al., 2005; Shinde et al., 2009; William et al., 2010), in Bangladesh such studies are much more limited (Hossain et al., 2012; Rahman et al., 2012). But all these research efforts in Bangladesh, except Hossain et al. (2012), are lacking analyses of diversity indices in which many studies have been completed in different parts of the world (Penczak et al., 1994; Nyanti et al., 2012).

Threats

Over the decade, ever increasing anthropogenic and natural hazards squeeze the species distribution across the country and subsequently many species are categorized as endangered in Bangladesh (IUCN Bangladesh, 2013). A large number of catadromous, anadromous and diadromous fishes use the southern coastal waters of Bangladesh seasonally as a major breeding, feeding and migratory routes conjoining with the Bay of Bengal (Sharker et al., 2015b). But in the last few years the riverine ecosystems within this area have changed considerably due to human intervention, intense tourism, pollution and even global climate change consequences which have resulted in destruction of migratory routes, altered wild ecosystems and deteriorated water quality in these areas (Hossain et al., 2013; IUCN Bangladesh, 2013; Hossain et al., 2014). These factors also rendered physiological characteristics such as body morphology and growth rate of many fishes (Froese, 2006; Tomljanović et al., 2011). Furthermore, indiscriminate harvesting of fry and fingerlings,

habitat modification, reduced water flow, growing human intervention on wetlands are also considered as significant threats for dwindling species diversity (Chaklader et al., 2014; Hossain et al., 2015). Habitat loss through divergence of coastal rivers and streams for irrigation is probably the most important factor that threatens a species in its wide geographical range.

Conservation recommendations

There is a growing awareness that a large number of fish fauna in the southern coastal region of Bangladesh are out of assessment due to insufficient scientific study. Therefore, a thorough study on species structure, along with their life history and reproductive biology, is imminent to conserve the biodiversity of fish species in this area (Hossain et al., 2015). Declaration of some parts of coastal region as "fish sanctuary" could be the effective step for conservation of threatened species. Moreover, systematic dredging especially in some main points of the coastal areas, introduction of fish bypasses to ease fish movement is also imperative as a sustainable management strategy (Meyer and Hinrichs, 2000; Carpio et al., 2011). Fishing practice during spawning season and use of illegal and destructive fishing gears must be banned. The most important conservational aspect of biodiversity conservation of coastal resources is to create awareness in stake holders through proper communication, cooperation and education. Furthermore, financial assistance from government and donor agencies is crucial with the intention of commencing further studies, research, monitoring and raising awareness among the fishermen for the conservation of fish diversity in the coastal area of Bangladesh.

To sum up, since the fish and fisheries in this region supports the sustenance and livelihood of thousands of millions of marginal poor people, especially fishermen, government should step up with long-term conservation strategies to retain sustainable production from the southern coastal waters of Bangladesh.

ACKNOWLEDGEMENTS

We sincerely thank Dr Marina Piria, University of Zagreb, Croatia, and Professor Dr Predrag Simonović, University of Belgrade, Serbia, for their valuable comments updating the manuscript.

Sažetak

RAZNOLIKOST IHTIOFAUNE JUŽNIH OBALNIH VODA BANGLADEŠA: POSTOJEĆE STANJE, PRIJETNJE I MOGUĆNOSTI OČUVANJA

Unatoč visokoj ugroženosti brojnim antropogenim i

ekološkim faktorima koji utječu na ribolovne resurse, južne priobalne vode se još uvijek smatraju jednom od vodenih vrućih točki biološke raznolikosti u Bangladešu. Ova je studija provedena da bi se utvrdila brojnost riba, ocijenilo njihovo stanje i status zaštite u rijekama koje se prostiru preko četiri južne priobalne oblasti Bangladeša. Tijekom istraživanja, u razdoblju od siječnja do prosinca 2014. godine, zabilježeno je ukupno 98 vrsta riba koje pripadaju 81 rodu, 48 porodica i 13 rodova. Najveću raznolikost u broju jedinki i broju vrsta utvrđena je kod skupine Perciformes. Od 98 vrsta, 26,53% su navedene kao lokalno ugrožene u Bangladešu, uključujući 11,22% vrsta koje su navedene kao ranjive, 10,20% kao ugrožena i 5,10% kao kritično ugrožene. Pri istraživanju četiri populacije utvrđeni su Shannon-Wiener indeks (H), Simpsonov indeks dominacije (D), Simpson indeks raznolikosti (1-D) i Margalefov indeks (d) kako bi se utvrdila raznolikost i bogatstvo vrsta u području istraživanja, čija je ukupna vrijednost iznosila 3,54-3,70, 0,04-0,05, 0,95-0,96 7,48-8,67. Za održanje perspektive ribarske bioraznolikosti u južnim priobalnim područjima Bangladeša, treba uzeti u obzir s najvećim prioritetom strategiju upravljanja i očuvanja kao i poribljavanja gospodarski važnih vrsta riba, uz uspostavljanje i održavanje ribljih skloništa, te zabranu nekritičnog ribolova i destruktivnih ribolovnih alata, identifikaciju i zaštitu područja mrijesta i rastilišta.

Ključne riječi: Biodiverzitet, obalno područje, indeks diverziteta, IUCN, konzervacija

REFERENCES

- Ahsan, M. E., Siddik, M. A. B., Sharker, M. R., Alam, M. A., Nahar, A., Pattadar S. N. (2014): Fish species availability in the fish landing centers of Patuakhali, Bangladesh. International Journal of Scientific & Technology Research, 3, 2, 1-6.
- Carpio, P. D. A., Villarroya, A., Arino A. H., Puig J., Miranda S. (2011): Communication gaps in knowledge of freshwater fish biodiversity: implications for the management and conservation of Mexican biosphere reserves. Journal of Fish Biology, 79, 1563–1591.
- Chaklader, M. R., Nahar, A., S iddik M. A. B., Sharker, R. (2014): Feeding Hhabits and diet composition of Asian Catfish *Mystus vittatus* (Bloch, 1794) in Shallow Water of an Impacted Coastal Habitat. World Journal of Fish and Marine Sciences, 6, 6, 551-556.
- Chaklader, M. R., Siddik, M. A. B., Nahar, A. (2015): Taxonomic diversity of paradise threadfin Polynemus paradiseus (Linnaeus, 1758) inhabiting southern coastal rivers in Bangladesh. Sains Malaysiana, 44, 9, 1241–1248.
- Chowdhury, M. S. N., Hossain, M. S., Das, N. G., Barua, P. (2010): Environmental variables and fisheries diversity of the Naaf river estuary. Bangladesh Journal of Coastal Conservation, 15, 1, 163-180.
- Eros, T., Scmera, D. (2010): Spatio-temporal scaling of

biodiversity and the species time relationship in a stream fish assemblage. Freshwater Biology, 55, 2391–2400.

- Eschmeyer, W. N. (ed.). (2014): Catalog of Fishes electronic version. Accessible at http://research.calacademy.org/ ichthyology/catalog/fishcatmain.asp.
- Froese, R. (2006): Cube law, condition factor and weightlength relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology, 22, 241-253.
- Fu, C., Wu, J., Chen, J., Wu, O., Lei, G. (2003): Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodiversity and Conservation, 12, 1649–1685.
- Galib, S. M., Naser, A., Mohsin, A. B. M., Chaki, N., Fahad, F. H. (2013): Fish diversity of the River Choto Jamuna, Bangladesh: Present status and conservation needs. International Journal of Biodiversity and Conservation, 5, 6, 389-395.
- Goswami, U. C., Basistha, S. K., Bora, D., Shyamkumar, K., Saikia, B., Changsan, K. (2012): Fish diversity of North East India, inclusive of the Himalayan and Indo Burma biodiversity hotspots zones: A checklist on their taxonomic status, economic importance, geographical distribution, present status and prevailing threats. International Journal of Biodiversity and Conservation, 4, 15, 592-613.
- Hossain, M. Y., Hossain, M. A., Ahmed, Z. F., Islam, R., Hossen
 M. A., Rahman, M. M., Ohtomi, J. (2015): Threatened
 fishes of the world: *Eutropiichthys vacha* (Hamilton, 1822)
 (Siluriformes: Schilbeidae). Croatian Journal of Fisheries,
 73, 80 82.
- Hossain, M. A. (1997): Conservation of animals for a balanced environment. Presidential address, Silver Jubilee (1972-1997), Zoological Society of Bangladesh (ZSB), Department of Zoology, Dhaka University, pp. 24-30.
- Hossain, M. Y., Rahman, M. M., Fulanda, B., Jewel, M. A. S., Ahamed, F., Ohtomi, J. (2012): Length-weight and lengthlength relationships of the five threatened fishes from the Jamuna (Brahmaputra River distributary) River, Northern Bangladesh. Journal of Applied Ichthyology, 28, 2, 275-277.
- Islam, M. S. (2003): Perspectives of the coastal and marine fisheries of the Bay of Bengal, Bangladesh. Ocean & Coastal Management, 46, 763–776.
- IUCN Bangladesh (2013): Red book of threatened fishes of Bangladesh, IUCN- The world conservation union. pp. 12-116.
- Khan, Z. H., Mohal, N., Khan, A. S. (2006): Salinity intrusion, coastal and fluvial flood modelling, Workshop on Climate Change Prediction Modelling, Dhaka, Bangladesh.
- Margalef, R. (1968): Perspectives in Ecological Theory. University of Chicago press, Chicago, IL. pp. 111.
- May, R. M. (1975): Patterns of species abundance and diversity. In Ecology and Evolution of Communities (ed.
- © The Author(s) 2015. Published by University of Zagreb, Faculty of Agriculture. All rights reserved.

M. L. D. Cody, J. M.). Cambridge, Mass.: Harvard University Press.

- Meyer, L., Hinrichs, D. (2000): Microhabitat preferences and movements of the weather fish, *Misgurnus fossilis*, in a drainage channel. Environmental Biology of Fishes, 58, 297–306.
- Nelson, J. S. (2006): Fishes of the World, fourth edition. John Wiley & Sons, Inc. pp. 601.
- Nyanti, L., Nur, R., Ling, T. Y., Jongkar, G. (2012): Fish diversity and water quality during flood migration works at semariang mangrove area, Kuching, Sarawak, Malaysia. Sains Malaysiana, 41, 12, 1517-1525.
- Penczak, T., Agostinho, A. A., Okada, E. K. (1994): Fish diversity and community structure in two mmall tributaries of the Parana River, Parana State, Brazil. Hydrobiologia, 294, 243-251.
- Prpa, Z., Treer, T., Piria, M., Sprem, N. (2007): The condition of fish from some freshwaters of Croatia, Ribarstvo, 65, 2007, 1, 25-46.
- Rahman, A. K. A. (2005): Freshwater Fishes of Bangladesh, second edition. Zoological Society of Bangladesh, University of Dhaka, Dhaka, Bangladesh, pp. 263.
- Rahman, M. M., Hossain, M. Y., Ahamed, F., Fatematuzzhura, S., Abdallah, B. R., Ohtomi, J. (2012): Biodiversity in the Padma distributary of the Ganges River, Northwestern Bangladesh: recommendations for conservation. World Journal of Zoology, 7, 4, 328-337.
- Rao, J. C. S., Raju, C. S. and Simhachalam, G. (2014): Biodiversity and conservation Status of fishes of river Sarada, Visakhapatnam District, Andhra Pradesh, India. Research Journal of Animal, Veterinary and Fishery Sciences, 2, 2, 1-8.
- Rixon, C. A. M., Duggan, I. C., Bergeron, N. M. N., Ricciardi, A., Macisaac, H. (2005): Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodiversity and Conservation, 14, 1365–1381.

- Sarkar, U. K., Pathak, A. K., Sinha, R. K., Sivakumar, K., Pandian, A. K., Pandey, A., Dubey, V. K., Lakra, W. S. (2012): Freshwater fish biodiversity in the River Ganga (India): changing pattern, threats and conservation perspectives Rev Fish Biol Fisheries, 22, 251–272.
- Sharker, M. R., Mahmud, S., Siddik, M. A. B., Alam, M. J., Alam, M. R. (2015a): Livelihood status of hilsha fishers around Mohipur Fish Landing site, Bangladesh. World Journal of Fish and Marine Sciences, 7, 2, 77-81.
- Sharker, M. R., Siddik, M. A. B., Nahar, A., Shahjahan, M., Faroque, A. A. (2015b): Genetic differentiation of wild and hatchery populations of Indian major carp *Cirrhinus cirrhosis* in Bangladesh. Journal of Environmental Biology, 36(5), 1223-1227.
- Shinde, S. E., Pathan, T. S., Bhandare, R. Y., Sonawane, S. L. (2009): Ichthyofaunal diversity of Harsool Savangi Dam, District Aurangabad, (M.S.) India. World Journal of Fish and Marine Sciences, 1, 3, 141-143.
- Siddik, M. A. B., Nahar, A., Ahamed, F., Hossain, M. Y. (2014): Over-wintering growth performance of mixedsex and mono-sex Nile tilapia *Oreochromis niloticus* in northeastern Bangladesh. Croatian Journal of Fisheries 72, 70–76.
- Siddik, M. A. B., Nahar, Ahamed, F., Masood, Z. Hossain, M. Y. (2013): Conservation of Critically Endangered Olive Barb *Puntius sarana* (Hamilton, 1822) through Artificial Propagation. Our Nature, 11, 2, 96-104.
- Tomljanović, T., Piria, M., Treer, T., Safner, R., Šprem, N., Aničić, I., Matulić, D., Kordić, V., (2011): Morphological parameters of common carp (*Cyprinus carpio L.*) populations in Republic of Croatia. *Ribarstvo*, 69, 81-93.
- William, E., Fricke, R., Frog, J. D., Pollack, R. A. (2010): Marine fish diversity: History of knowledge and discovery (Pisces). Zootaxa, 25, 19-50.

APPENDIX 1. Typical specimens of several fish species from Bangladesh (captured by Md Abu Hanif and Md Reaz Chaklader)

Congresox talabon (Cuvier, 1829)

Anodontostoma chacunda (Hamilton, 1822)

Tenualosa ilisha (Hamilton, 1822)

Dussumieria elopsoides (Bleeker, 1849)

Coilia neglecta (Whitehead, 1967)

Xenentodon cancila (Hamilton, 1822)

Liza parsia (Hamilton, 1822)

Harpadon nehereus (Hamilton, 1822)

Gudusia chapra (Hamilton, 1822)

Tenualosa toli (Valenciennes, 1847)

Setipinna phasa (Hamilton, 1822)

Pellona ditchela (Valenciennes, 1847)

Eleutheronema tetradactylum

Amblypharyngodon mola (F. Hamilton, 1822)

Systomus sarana (Hamilton, 1822)

Puntius sophore (Hamilton, 1822)

Chelon subviridis (Valenciennes, 1836)

Clarias gariepinus

Nandus nandus

Polynemus paradiseus

Barbonymus gonionotus (Bleeker, 1850)

Cirrhinus cirrhosus (Hamilton, 1822)

Osteobrama cotio (Hamilton, 1822)

Pethia ticto (Hamilton, 1822)

Lepidocephalichthys guntea (Hamilton, 1822)

Leiodon cutcutia

Channa gachua

Platycephalus caeruleopunctatus

Acanthopagrus chinshira

Ompok pabda

Labeo calbasu

Chanda nama

Mastacembelus armatus

Labeo gonius

Notopterus notopterus

Rita rita

Mystus vittatus

Chitala chitala

Parambassis ranga

Macrognathus aral

Clupisoma garua

Silonia silondia

Ailia coila

Trichogaster fasciata

Johnius carutta

Wallago attu

Abalistes stellaris

Eleotris fusca (Forster, 1801)

Chelon parsia (Hamilton, 1822)

Clarias magur

Hypostomus plecostomus

Scatophagus argus

Channa striata

Nibea soldado

Plotosus canius

Sillaginopsis panijus

Apocryptes bato (Hamilton, 1822)

Euthynnus affinis

Scomberoides tol