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Marine underwater habitats dominated by seagrass Posidonia oceanica 
play an essential role in fish community assembly, affecting taxonomic and 
functional diversity, abundance and fish behavior. The value of seagrasses 
as habitat depends on the spatial arrangement of the seascape elements 
and the availability of alternative habitats. Little is known about the effect 
of the seascape context of P. oceanica meadows on fish assemblages in the 
Mediterranean Sea. To identify P. oceanica meadows' relative importance 
as a habitat for fishes, fish communities in the Croatian Adriatic Sea were 
investigated, using SCUBA lure-assisted visual census. The results show 
a significant effect of different arrangements of P. oceanica meadows' 
seascape elements and surrounding habitats on fish community structure. 
Fragmented mosaic meadows with P. oceanica growing directly on 
and between rocky-algal reefs/boulders had significantly higher fish 
abundances compared to both types of continuous meadows (bordering 
rock and bordering sand). Continuous meadows bordering sand harbored 
the highest number of unique species. Evidence that alternative structured 
habitats within proximity to seagrass beds may affect the community 
structure of associated fish assemblages is provided, highlighting the 
need to consider P. oceanica meadows' seascape context in conservation 
management and experimental design for fish community structure.
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INTRODUCTION

Seagrasses represent one of the most productive and 
diverse shallow-water marine habitats; they form 
extensive and dense beds with high structural complexity 
(Duarte and Chiscano, 1999), which increases their value 
as a nursery/spawning and feeding ground for many 
fish, invertebrate and bird species (Orth et al., 1984; 
Nagelkerken et al., 2001). Seagrasses are identified as 
being "ecosystem engineers" for providing habitat for 
diverse fauna and for delivering numerous ecosystem 
services, such as slowing down water movement, 
stabilizing the sediment, protecting the shores from 
erosion, increasing sedimentation rates, and having high 
denitrification, nitrogen burial and carbon burial rates 
(Bos et al., 2007; Eyre et al., 2011; McLeod et al., 2011). 
Despite their value, seagrasses are among the most 
endangered habitats worldwide; their decline rates are as 
high as those of coral reefs or mangroves (estimated loss 
of 110 km2 yr-1 between 1980 and 2006) (Waycott et al., 
2009). The known extent of Posidonia oceanica L. Delile 
1813 within the Mediterranean in 2015 was a minimum 
of 12,247 km2, with an estimated loss of 10% or 1,241 
km2 over the past 50 years (Telesca et al., 2015). However, 
the report mentioned above lacks information on the 
presence or absence of P. oceanica for almost half of 
the Mediterranean coastline (primarily the southeastern 
Mediterranean). 
Posidonia oceanica is an endemic Mediterranean seagrass 
that forms large monospecific meadows (Hemminga and 
Duarte, 2000) present between the surface and 44 meters 
of depth (Den Hartog, 1979; Borg and Schembri, 1995; 
Procaccini et al., 2003). Fish assemblages associated 
with P. oceanica meadows have been well studied (Bell 
and Harmelin-Vivien, 1982; Francour, 1997; Moranta et 
al., 2006; Boudouresque et al., 2012; Zubak et al., 2017), 
and the high degree of spatial and temporal variation in 
the structure of fish assemblages have been documented 
(Guidetti, 2000; Deudero et al., 2008; Kalogirou et al., 
2010). Existing studies of the community structure and 
the differences in fish assemblages focus on comparing P. 
oceanica meadows to other nearshore habitats (Mouillot 
et al., 1999; Guidetti, 2000). To the best of our knowledge, 
there are no published studies on how P. oceanica fish 
assemblages are influenced by the seascape context, 
especially by the surrounding or adjacent habitats. 
Published studies in tropical and temperate areas 
outside the Mediterranean region have documented 
interactions among seagrass, mangrove and coral reef 
habitats (Nakamura and Sano, 2004; Dorenbosch et al., 
2006; Gilby et al., 2018). Coral reefs and mangroves affect 
the tropical and subtropical fish assemblages in adjacent 
habitats (Dorenbosch et al., 2006; Kopp et al., 2007; 
Olds et al., 2013). Similarly, the proximity of seagrass 
beds in subtropical estuaries provides complex habitats 
and increases the number of species and individuals in 
nearby habitats (Gilby et al., 2018). Species diversity and 

abundance of associated fauna can be positively affected 
by a higher habitat structural complexity (Graham and 
Nash, 2013; Henderson et al., 2017), and the combination 
of shelter, food resources and protection from predation 
are the main factors that shape the animal communities 
(Connolly and Hindell, 2006). Seagrasses can be nurseries 
from which juvenile fish move to adjacent habitats or 
serve as feeding or sheltering grounds (Nagelkerken, 
2000; Dorenbosch, 2004; Nakamura and Sano, 2004). 
Within seagrass habitats, fish communities can be 
affected, among other factors, by seagrass patch size 
and shape (Salita et al., 2003), but also by the seascape 
context — the spatial organization of the various elements 
of the submarine landscape, including the availability of 
adjacent alternative structured habitats (Dorenbosch et 
al., 2007; Pittman et al., 2007; Unsworth et al., 2008).
Along the east coast of the Adriatic Sea (Croatia), Posidonia 
oceanica beds occur at depths ranging from 0 to about 
36 meters on unconsolidated sediments and flat rock or 
rock boulders (Zubak et al., 2020). The meadows can be 
very diverse and most often occur as dominant habitat in 
one of the three types of the spatial organization of the 
seascape elements: (i) continuous meadows bordering 
bare unconsolidated sediments, (ii) continuous meadows 
bordering rocky algal reefs/boulders, and (iii) mosaic 
meadows growing on rocky algal reefs/boulders — a 
particular case where seagrasses grow anchored in the 
crevices of rocks and between rocky boulders (Fig. 1). The 
effects of the different seascape contexts of P. oceanica 
meadows on fish assemblage descriptors were predicted. 
The idea that individual fish species exhibit significant 
differences in P. oceanica meadows' preference depending 
on the meadows' seascape context was proposed to test 
the null hypotheses that there were no differences in 
species composition, species richness and abundance 
of fish assemblages occurring over different seascape 
contexts of P. oceanica meadows.

MATERIALS AND METHODS

Survey locations and methods

Fish assemblages within seagrass meadows of Posidonia 
oceanica were surveyed during 2011 (June-September) 
and 2012 (March-September), along the eastern coast of 
the Adriatic Sea, Croatia (Fig. 2). Fifty-five lure-assisted 
visual census belt transects (details in S1 Table) were 
performed, following the procedure described in Kruschel 
and Schultz (2010, 2012), using SCUBA diving along 
10-meter isobaths. All transects were performed during 
the daytime, with calm waters, no wind (0-1 Beaufort), 
and at high underwater visibility (>15 m). 
The diver (always the same individual observer, IZČ) 
moved along each georeferenced transect (Garmin 
GPSMAP 60CSx Handheld GPS Navigator attached to 
a buoy above the diver) and observed and recorded all 
fishes appearing within a water column defined by its 
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Fig 1. Three spatial organization types of Posidonia oceanica seascape elements. 
A: Continuous meadow bordering sand. B: Continuous meadow bordering rocky-algal reef. C: Posidonia oceanica 
mosaic meadow on rocky substrates and between boulders with macro-algae. The thick black line represents a single 
transect performed within each of the surveyed meadows (illustration created by Ivana Zubak Čižmek with the courtesy 
of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/
symbols/); authors: Diana Kleine, Joanna Woerner, and Tracey Saxby)

Fig 2. Locations of surveyed fish assemblages within Posidonia oceanica seagrass meadows in the Eastern Adriatic Sea, 
Croatia
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width (1 m to both sides of the lure line's path) and the 
height (extending from the bottom upward to the diver's 
eyes, approximately 2 m). The lure was a small (2* 1 cm) 
piece of lead tied to a 2 m long fishing line, wrapped 
around a Styrofoam® board. The lure was positioned and 
moved approximately 5 cm above the substrate's surface. 
The transects were time standardized to 10 minutes (the 
length varied between 61 and 99 m; mean 79.88 m (SD 
11.05)). Time standardized transects were chosen because 
lure use requires sufficient time to allow fish to approach 
the lure. If transects varied in timespan, the error variance 
in the abundance of approaching fish would increase, 
and if transects tended to occupy different time spans in 
different habitats, then timespan would be a confounding 
factor with habitat. The addition of a lure to visual fish 
counts along transects increases the probabilities to see 
fishes and reduces bias due to differences in size, mobility, 
tendency to hide/camouflage (Kruschel and Schultz, 2010, 
2012). The diver took the following data on individual 
fish along each transect: taxon (usually species level), 
developmental stage (adult/juvenile), and abundance. 
In some analyses, juvenile fish were treated as being 
different from their conspecific adults since it has been 
shown that many differences in fish behavior (habitat 
selection, feeding, anti-predator response) may depend 
on the ontogenetic stage (Jones, 1984; Laegdsgaard 
and Johnson, 2001). If the observed individuals were 
grouping/schooling, individual fish observations were 
considered non-independent; such groups were defined 
as two or more individuals of the same taxon observed 
at the same moment (i.e., observations). Individuals 
were counted to 20 fish, while abundance in larger 
groups was estimated in increments of 10 up to 100 fish 
and in increments of 100 up to the maximum observed 
group size of 200. The diver simultaneously recorded the 
visually estimated proportion of P. oceanica cover (p1 < 
25%, 25% <p2 ≤ 50%, 50% < p3 ≤ 75%, 75% < p4 ≤ 100%) 
for each transect. The height of the P. oceanica canopy 
was uniform across all transects (approximately 80 cm). 
Other predictor variables that potentially influence the 
fish assemblage structure included seawater temperature 
(°C), the shore's slope calculated from the distance to the 
shore and transect depth (°), and coastline geography 
(embayment vs. open shore). Fish assemblages were 
characterized by documenting the absolute and relative 
abundance of adult and juvenile fish, fish taxonomic 
diversity, and fish species composition.

Data analysis

All statistical analyses were conducted using R v.3.4.2. 
(R Development Core Team and R Core Team, 2017) and 
RStudio 1.1.383. For all analyses, significance levels were 
set at α = 0.05. Analysis of variance (ANOVA) using the 
aov function (Chambers et al., 2017) was performed to 
test for differences in abundance and richness among the 
three different seascape contexts of Posidonia oceanica 
meadows, among the different P. oceanica covers and 

among different temperature values. The analyses were 
based on a one-way model and the residuals were checked 
for normality using the Shapiro-Wilk test. Tukey HSD post-
hoc test using the TukeyC and TukeyHSD functions (Faria 
et al., 2018) was performed to explore the differences in 
the abundance among all pairs of levels of the selected 
factor (e.g., seascape context).
Because transects varied in length and were time 
standardized, abundance was expressed and analyzed 
as the abundance per m3 of each transect (m3; volume 
= length * width (2 m) * height (2 m)). To compare fish 
assemblages found associated with the three different 
seascape contexts of P. oceanica meadows, permutational 
multivariate analysis of variance, PERMANOVA (Anderson, 
2001; McArdle and Anderson, 2001) was used, which 
is a non-parametric confirmatory statistics method. 
The predictor variables of interest were the meadow's 
seascape context (bordering bare sand, bordering rocky-
algal reefs, or mosaic rocky-algal substratum), P. oceanica 
cover, and temperature. The response matrix was the 
matrix of relative fish abundances in each community 
at each transect, with the transect being the statistical 
sample replicate (N = 55). The fish community matrix 
was converted to the Bray-Curtis distance matrix before 
analysis. The similarities among communities grouped by 
the primary predictor variable (seascape context of the 
meadow) were presented visually with unconstrained, 
non-metric multidimensional scaling using Bray-Curtis 
distances; double Wisconsin standardization was used 
and the solution with the lowest stress was reported; 2D 
nMDS, using the metaMDS function in the vegan package 
of R (Faith et al., 1987; Minchin, 1987). The variation in 
the abundance of each species within and among the 
meadows' seascape contexts was further partitioned, 
using an analysis of deviance for the generalized linear 
(quassi-Poisson) model.

RESULTS

The diversity and abundance of fishes 

A total of 2010 observations of 6842 fish individuals 
belonging to 45 taxa (59 when treating juveniles 
differently from their conspecific adults) were identified in 
the Posidonia oceanica meadows in the Croatian Adriatic 
Sea. Fifteen fish families were recorded and, in terms 
of species richness, Labridae, Gobiidae and Sparidae 
were the most diverse, with 12, 9 and 7 recorded taxa, 
respectively. Labridae and Sparidae contained 73% of all 
observed individuals (Table 1). 
The most frequently recorded species in the whole dataset 
(including juveniles) were Coris julis (394 observations of 
495 individuals), Symphodus ocellatus (364 observations 
of 778 individuals), Chromis chromis (155 observations 
of 2740 individuals) and Diplodus annularis (117 
observations of 129 individuals). Nine taxa were observed 
on a single occasion (Table 2). 
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Family Taxon N observations Relative abundance

Labridae (12) Total 1021 0.508

Coris julis (coju) 394

Symphodus cinereus (syci) 93

Symphodus doderleini (sydo) 17

Symphodus melanocercus (symel) 84

Symphodus mediterraneus (seme) 25

Symphodus melops (symelo) 8

Symphodus sp. 12

Symphodus ocellatus (syoc) 364

Symphodus roissali (syro) 2

Symphodus rostratus (syros) 11

Symphodus tinca (syti) 9

Thalassoma pavo (thpa) 2

Sparidae (7) 393 0.196

Boops boops (bobo) 50

Diplodus annularis (dian) 117

Diplodus vulgaris (divu) 90

Oblada melanura (obme) 85

Sarpa salpa (sasa) 2

Sparus aurata (spaau) 7

Spondyliosoma cantharus (spca) 42

Serranidae (3) 176 0.088

Serranus cabrilla (seca) 43

Serranus hepatus (sehe) 33

Serranus scriba (sesc) 100

Pomacentridae (1) 155 0.077

Chromis chromis (chch) 155

Centracanthidae (2) 136 0.068

Spicara maena (spma) 62

Spicara smaris (spsm) 74

Table 1. The total number of fish observations, the number of recorded taxa in each fish family and their relative abundances 
observed in Posidonia oceanica meadows in the Adriatic Sea, Croatia. Abbreviated taxa names are given in the parentheses 
following the full taxon name
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Continued

Family Taxon N observations Relative abundance

Gobiidae (9) 63 0.031

Gobius sp. 15

Gobius bucchichi/incognitus (gobu) 23

Gobius cruentatus (gocr) 8

Gobius fallax (gofa) 2

Gobius geniporus (goge) 3

Gobius auratus (goau) 1

Gobius niger (goni) 1

Gobius vittatus (govi) 8

Pomatoschistus sp. 2

Mullidae (1) 13 0.006

Mullus surmuletus (musu) 13

Blennidae (1) 5 0.002

Parablennius sp. 5

Scorpaenidae (3) 4 0.002

Scorpaena notata (scno) 2

Scorpaena porcus (scpo) 1

Scorpaena scrofa (scsc) 1

Atherinidae (1) 1 <0.001

Atherina hepsetus (athe) 1

Carangidae (1) 1 <0.001

Seriola dumerili (sedu) 1

Congeridae (1) 1 <0.001

Conger conger (coco) 1

Moronidae (1) 1 <0.001

Dicentrarchus labrax (dila) 1

Muraenidae (1) 1 <0.001

Muraena helena (muhe) 1

Unidentified 39 0.019

Total (45) 2010
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Table 2. Taxa observed exclusively in one seascape context (bordering sand/bordering rock/mosaic) of Posidonia oceanica 
meadows, observed on more than one occasion (their abundance is shown in parentheses)

Seascape context

Bordering sand Bordering rock Mosaic

Mullus surmuletus (13) Gobius vittatus (8) Scorpaena notata (2)

Symphodus melops (8)   

Spondyliosoma cantharus juv. (6)   

Pomatoschistus sp. (2)   

Sarpa salpa (2)   

Symphodus rostratus (2)   

Thalassoma pavo (2)   

The abundance of recorded fish varied significantly 
between the three seascape contexts of the P. oceanica 
meadows (Table 3, p = 0.009, F = 5.128); it was higher in 
mosaic meadows than in the meadows bordering sand and 
meadows bordering rock (Fig. 3). A statistically significant 
difference was found between mosaic meadows and 
meadows bordering rock (Tukey p = 0.032), and between 
mosaic meadows and meadows bordering sand (Tukey 
p = 0.011). There was no significant difference in the 
abundance per m3 between the two types of continuous 
meadows (Tukey p = 0.999). 
No statistically significant difference was observed in 
species richness between the three observed seascape 
contexts of P. oceanica meadows (p = 2.24, F = 1.48). The 
highest species richness and abundance were observed 
at the following sites: Fulija West (91 observations of 285 
individuals belonging to 22 taxa), Žut (53 observations 

of 256 individuals belonging to 19 taxa) and Galijola (86 
observations of 836 individuals belonging to 17 taxa). The 
transects mentioned above were all placed in mosaic P. 
oceanica meadows.

Community structure in three meadow types

All three seascape contexts of the P. oceanica meadows 
shared a species pool; 25 of 59 taxa (42% including 
juveniles) co-occurred in the three meadow types and 
the meadows bordering sand had the highest number of 
unique taxa (Fig. 4). 
Analysis of the fish community using nMDS showed the 
separation of three seascape contexts of the meadows 
(Fig. 5), with nMDS stress 0.20. Further analysis showed 
that 11 taxa showed significant variation in the abundance 
across the meadow types (Table 4). 
 

Fig 3. Box plot of abundance per volume unit (m3) of fish in each of the three seascape contexts (bordering sand/
bordering rock/mosaic) of Posidonia oceanica meadows. Box plots show the median (line near the center), the first and 
third quartile (the box), the extreme values whose distance from the box is at most 1.5 times the interquartile range 
(whiskers) and remaining outliers (black dots)
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Response: abundance (per volume unit; m3) Df Ss Ms F value P  

Meadow 2 0.036 0.018 5.128 0.009 **

Residuals 52 0.184 0.004

Table 3. Analysis of variance using ANOVA of fish abundance per m3, across three different seascape contexts of Posidonia oceanica 
meadows in the Adriatic Sea, Croatia (Df – degrees of freedom, SS – Sums of squares, MS – Mean Sums of squares)

*p < .05; **p < .01; ***p < .001

Taxon NMDS1 NMDS2 deviance value p

Atherina hepsetus 0.599 -0.801 0.509 0.604

Boops boops 0.96 -0.281 2.362 0.104

Chromis chromis -0.837 0.546 2.778 0.071

Chromis chromis juvenile -0.962 -0.273 1.491 0.235

Conger conger 0.972 -0.233 0.509 0.604

Coris julis -0.867 -0.499 3.104 0.053

Coris julis juvenile -0.161 -0.987 1.883 0.162

Diplodus annularis* 0.447 0.894 8.657 0.001

Diplodus annularis juvenile* 0.33 0.944 5.781 0.005

Dicentrarchus labrax 0.761 0.649 1.491 0.235

Diplodus vulgaris -0.065 0.998 1.907 0.159

Diplodus vulgaris juvenile 0.879 -0.477 0.829 0.442

Gobius sp. 0.998 0.061 1.028 0.365

Gobius sp. juvenile 0.637 0.771 1.539 0.224

Gobius bucchichi/incognitus* 0.682 0.731 3.177 0.05

Gobius bucchichi juvenile -0.768 0.64 1.491 0.235

Gobius cruentatus 0.644 0.765 0.449 0.641

Gobius fallax 0.233 -0.973 0.347 0.709

Gobius geniporus 0.554 0.833 1.95 0.152

Gobius auratus 0.998 0.059 1.491 0.235

Gobius niger 0.841 0.542 0.509 0.604

Gobius vittatus 0.392 -0.92 1.262 0.292

Muraena helena -0.962 -0.273 1.491 0.235

Mullus surmuletus* 0.009 0.999 20.003 0

Oblada melanura -0.999 -0.024 0.731 0.486

Table 4. Fish taxa observed within Posidonia oceanica meadows in the Adriatic Sea, Croatia, their ordination coordinates, deviance 
values in the analysis of deviance of abundance across different seascape contexts and associated null probability values (taxa with 
an asterisk sign showed a significant abundance variation across the P. oceanica seascape contexts; p < 0.05 shown in bold)
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Continued

Taxon NMDS1 NMDS2 deviance value p

Oblada melanura juvenile 0.982 -0.189 0.881 0.42

Parablennius sp. -0.793 -0.609 2.915 0.063

Pomatoschistus sp. -0.137 0.991 1.491 0.235

Sarpa salpa -0.552 0.834 1.491 0.235

Scorpaena notata -0.883 -0.47 2.701 0.077

Scorpaena porcus -0.937 -0.35 1.491 0.235

Scorpaena scrofa 0.594 -0.804 0.509 0.604

Serranus cabrilla* -0.998 -0.07 15.483 0

Seriola dumerili -1 0.02 0.509 0.604

Serranus hepatus 0.992 -0.129 1.278 0.287

Serranus hepatus juvenile 0.234 -0.972 0.509 0.604

Serranus scriba -0.69 0.724 2.515 0.091

Serranus scriba juvenile -0.999 0.02 0.509 0.604

Sparus aurata -0.522 0.853 0.926 0.402

Spondyliosoma cantharus* -0.858 0.513 7.929 0.001

Spondyliosoma cantharus juvenile* -0.982 -0.187 3.526 0.037

Spicara maena -0.054 0.999 0.602 0.551

Spicara smaris 0.378 0.926 0.685 0.509

Spicara smaris juvenile -0.992 0.13 1.491 0.235

Symphodus cinereus* 0.985 0.171 6.587 0.003

Symphodus doderleini 0.082 -0.997 1.57 0.218

Symphodus melanocercus -0.558 -0.83 2.979 0.06

Symphodus mediterraneus -0.749 0.662 0.072 0.931

Symphodus melops* -0.723 0.691 6.428 0.003

Symphodus sp. 0.216 -0.976 0.573 0.567

Symphodus sp. juvenile 0.167 -0.986 1.366 0.264

Symphodus ocellatus* 0.625 -0.781 9.563 0

Symphodus ocellatus juvenile -0.967 -0.255 2.772 0.072

Symphodus roissali* -0.537 0.844 3.225 0.048

Symphodus rostratus 0.247 0.969 0.226 0.799

Symphodus tinca -0.591 0.807 2.19 0.122

Thalassoma pavo -0.516 0.857 1.491 0.235
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Fig 4. Total, shared and unique fish taxa across three different seascape contexts (bordering sand/bordering rock/
mosaic) of Posidonia oceanica meadows in the Adriatic Sea, Croatia

PERMANOVA results indicate a significant individual 
influence of seascape context, seagrass cover and 
temperature on fish community structure variation with 
no interaction between the predictor variables (Table 5). 
The primary variable of interest, the meadow's seascape 
context, explained approximately 13% of the fish 
community structure variability (PERMANOVA R2 = 0.13, 
p<0.01). Although the seagrass cover and temperature 
showed no significant effect on species richness or 
abundance, they were included as covariates in the 
PERMANOVA analysis to control potential interaction with 
the primary variable of interest.

The relative abundance of each of the 20 selected taxa 
across different P. oceanica meadows' seascape contexts 
is presented in Fig. 6. Twenty taxa chosen for this analysis 
either showed a highly significant abundance variation 
across the three different seascape contexts of P. oceanica 
meadows (11 taxa) or had a high overall abundance (9 
taxa).
The proportions of the most abundant species in each 
of the three different seascape contexts of P. oceanica 
meadows showed that Coris julis and Chromis chromis 
are among the four most abundant species in all meadow 
types (Fig 7).
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Fig 5. Two-dimensional non-metric multidimensional scaling plots of the fish community across three different seascape 
contexts (bordering sand/bordering rock/mosaic) of Posidonia oceanica meadows in the Adriatic Sea, Croatia. The 
symbols represent individual transects within the datasets indexed in Table S1. Bray–Curtis distance, final stress = 0.20. 
Ellipses show 95% confidence limits for the delimitation of each group. For species/taxa abbreviations see Table 1.

Df SS MS F model R2 p

Temperature 1 0.543 0.543 3.333 0.047 0.003 **

Cover 2 1.060 0.530 3.254 0.092 0.001 ***

SC 2 1.496 0.748 4.593 0.130 0.001 ***

Temperature:cover 2 0.424 0.212 1.302 0.037 0.177

Temperature:SC 2 0.413 0.206 1.268 0.036 0.195

Cover:SC 4 0.784 0.196 1.203 0.068 0.184

Temperature:Cover:SC 3 0.643 0.214 1.317 0.056 0.125

Residuals 38 6.187 0.163 0.536

Total 54 11.549 1

*p < .05; **p < .01; ***p < .001

Table 5. Analysis of variance using PERMANOVA of the effect of the temperature, cover, seascape context (SC) and their 
interactions on the variability in Posidonia oceanica fish community structure in the Adriatic Sea, Croatia (Df – degrees of freedom, 
SS – Sums of squares, MS – Mean Sums of squares)
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Fig 6. Bar plot showing the relative abundance of twenty selected fish species across different Posidonia oceanica 
seascape contexts (bordering sand/bordering rock/mosaic). Species with an asterisk showed a significant abundance 
variation across P. oceanica seascape contexts, and species with a plus sign were among the most abundant species 
overall. The numbers above the bars indicate each taxon's absolute abundance in the three P. oceanica seascape 
contexts.
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Fig 7. Bar plot showing the proportion of most abundant fish species in each of the three Posidonia oceanica seascape 
contexts (bordering sand/bordering rock/mosaic). The numbers above the bars indicate each taxon's relative abundance 
in the three seascape contexts. Species whose relative abundances were <5% were pooled.
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DISCUSSION

The fish assemblage of Posidonia oceanica meadows

This research indicates that Posidonia oceanica 
ichthyofauna in all explored seascape contexts is relatively 
homogeneous and shares a species pool. However, 
statistically significant differences in fish community 
structure across the three different seascape contexts 
of P. oceanica meadows were found, and 11 taxa with 
significant differences in abundance across seagrass 
structural arrangements were discovered. 
The total number of recorded taxa (45) was somewhat 
higher than previously described in other Mediterranean 
areas (at similar depth and using visual census): 38 
from the Balearic Islands (Frau et al., 2003), 37 from 
Alicante, Spain (Valle and Bayle-Sempere, 2009), 35 
from the Ligurian Sea (Tunesi and Vacchi, 1993) and 34 
from Otranto, Apulian coast (Guidetti, 2000). The higher 
number of recorded taxa is probably because the lure-
assisted visual census was used (Kruschel and Schultz, 
2012). Visual counts facilitated by a device to lure out 
fish from their hideout into the view of the diver can 
significantly improve the probability of detecting small 
fish hidden within the seagrass canopy, predators that 
search for and encounter prey from a concealed position 
(e.g., ambush predators and wait-chase predators) or fast 
cruising predators which are easily overlooked during 
their brief appearance in regular transects (Kruschel and 
Schultz, 2012). A significant difference in abundance 
was found between complex mosaic meadows and 
continuous meadows bordering rock/bordering sand. At 
the same time, the species richness showed no significant 
difference among the three habitats. The presence of 
rocky bottom increased abundance, but surprisingly it 
did not significantly influence species richness despite 
increased habitat heterogeneity. 

Differences in community structure in three different 
seascape contexts of Posidonia oceanica meadows

The null hypothesis of no differences in community 
structure of fish occurring over three different seascape 
contexts of Posidonia oceanica meadows was rejected 
based on nMDS and PERMANOVA results (Fig. 5, Table 
5). Significant community differences across habitat 
arrangements are partly explained by interactions and 
habitat choice of individual species and their functional 
roles in the community. 
Some of the observed species showed a significant 
association with one seascape context of P. oceanica 
meadow. For example, Gobius bucchichi/incognitus and 
Mullus surmuletus were more abundant in continuous 
meadows bordering sand. Juveniles of Coris julis, Spicara 
smaris, Symphodus doderleini and Symphodus ocellatus 
were more abundant in continuous meadows bordering 
rock, while Serranus cabrilla and Spondyliosoma 
cantharus were more abundant in mosaic meadows. 

That association may be related to their interactions and 
choice of habitat components, a very similar observation 
to Rees et al. (2018) in Australia who detected differences 
in the abundance of species and families among habitats 
that contributed to the observed multivariate patterns of 
fish associated to temperate rocky reefs surrounded by 
seagrass meadows. 
In our study, the most obvious observation is that Coris 
julis, the most abundant species, is common in all three 
seascape contexts of Posidonia oceanica meadows (Fig. 
6). However, C. julis has higher abundances in mosaic 
meadows than in continuous meadows bordering sand 
(on average about 2.5x) and higher abundances in 
continuous meadows bordering rock vs. sand (on average 
about 2.3x) (Fig. 6). C. julis juveniles are seen more 
frequently in continuous P. oceanica meadows bordering 
rock and seem to avoid the mosaic arrangement, which 
could indicate interference competition with conspecific 
adults or an increased predation risk within the mosaic 
meadow. Mosaic meadows are characterized by high 
abundances of Serranus scriba, Serranus cabrilla and C. 
julis. They share a sit-and-pursue (Schmitz et al., 1997) or 
wait-chase (Kruschel and Schultz, 2010) predation mode, 
specifically promoted by mosaic habitat arrangements. 
Together, they make up 36% of the total abundance in 
the mosaic meadows (Fig. 7). S. cabrilla is thought to be 
a resident wait-chase predator (Bell and Harmelin-Vivien, 
1983) that prefers coralligeneous hard bottoms and rocky 
reefs (Tunesi and Vacchi, 1993; Seytre et al., 2013), so it 
might be more abundant in mosaic meadows because 
it could use the benefit of a structurally more complex 
habitat for hunting prey (Fernandez et al., 2005). Another 
aggressive and very abundant (in all three seascape 
contexts) mesopredator is Diplodus annularis. However, 
it was seen to avoid the mosaic arrangement, perhaps 
because it cannot compete for food with its cruise-chase 
predation mode against the overall more abundant wait-
chase predators. Active and visual pursuits of prey are less 
adaptive in highly complex habitats than passive pursuit 
tactics (Schultz et al., 2009). 
The mosaic meadow is further defined by two substrate 
dwelling labrids (Symphodus ocellatus and Symphodus 
melanocercus) and two benthopelagic fish species taxa - 
adult Chromis chromis and adult Oblada melanura. It was 
interesting to note that the juveniles of O. melanura have 
not been observed within the mosaic arrangement. Adult 
C. chromis are almost twice as abundant in the mosaic 
arrangement than in the other two seascape contexts. 
Adult O. melanura are four times more abundant in 
mosaic meadows and 3.2x more abundant in continuous 
meadows bordering rock than in continuous meadows 
bordering sand (Fig. 6). The results mentioned above 
indicate that mosaic meadows' high structural complexity 
provides various food items and represents a very 
attractive habitat for such species (Guidetti and Bussotti, 
1998). Bonaca and Lipej (2005) found that C. chromis 
avoided continuous seagrass meadows in general, so the 
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higher abundance of this species in mosaic meadows 
might indicate that the combination of P. oceanica 
and rocky boulders with macroalgae provided a more 
favorable habitat. 
Overall, the highest fish abundances were recorded on 
transects placed in mosaic meadows with high habitat 
complexity where seagrasses and rocky-algal reefs 
are closely interspersed, constituting more habitat 
combinations and food niches than areas where one of 
the components is missing. Mosaic meadows are more 
heterogeneous and probably also more complex habitats, 
which may explain the highest fish abundances. The 
proximity of feeding grounds and shelter may enhance 
fish abundance and richness in seagrass beds, implying 
that complexity per se may be an essential factor in 
habitat choice; a combination of habitat types might have 
a higher value for fish than any individual component of a 
habitat (Unsworth et al., 2008).
In continuous meadows bordering rock, species such 
as Symphodus doderleini and Symphodus ocellatus 
were observed in higher abundances than in the other 
meadow types, probably because they generally inhabit 
seagrass beds and rocky reefs (Guidetti, 2000; Frau et al., 
2003). Even though the mosaic meadows and continuous 
meadows bordering rock might look similar and are 
made of the same two structural elements (seagrass 
and rocky-algal reefs/boulders), it was interesting to see 
that in continuous P. oceanica meadows bordering rich 
rocky-algal habitat, C. chromis are less abundant than in 
mosaic meadows, and adult O. melanura are replaced 
by Spicara smaris, a zooplanktivorous fish (Karachle and 
StergIou, 2014). Juveniles, observed to be more common 
in meadows bordering rock, are Diplodus vulgaris and 
small gobies, which were not observed in the mosaic 
arrangement. 
In continuous meadows bordering sand, the species 
highly indicative of community structure were Mullus 
surmulletus and Symphodus melanocercus, which were 
exclusively observed in P. oceanica bordering sand (13 
and 8 times, respectively). M. surmuletus is a bottom-
dwelling transient predator, frequently found over sand 
and soft bottoms at depths less than 100 m (Ben-Tuvia, 
1990). Although it is considered associated with P. 
oceanica (Stagličić et al., 2011), it was recorded during our 
research only if the adjacent habitat was unconsolidated 
sediments (Fig. 6), consistent with results of Fernández 
et al. (2005) who found that M. surmuletus forages 
along the seagrass boundaries and in sandy corridors. 
Gobius bucchichi/incognitus was more abundant in the 
continuous sand-bordering than in the rock-bordering P. 
oceanica meadows (Fig. 6), probably because it prefers 
sandy bottoms combined with structured habitat (P. 
oceanica, in this case) (Francour et al., 2011). 
What is most interesting about the community within 
sand-bordering P. oceanica meadows, and seems to 
define it in contrast to the rock-related arrangements, is 
the presence of exclusively observed species that may 

enter the P. oceanica meadow from within bare sand 
habitats in proximity (Jenkins et al., 2015). Examples aside 
from the above mentioned and relatively abundant M. 
surmulletus, S. melanocercus and G. bucchichi/incognitus 
are Sarpa salpa, Symphodus rostratus, Thalassoma 
pavo and juvenile Spondyliosoma cantharus. Juvenile S. 
cantharus choose a completely different habitat from 
their adult conspecifics. While juveniles are exclusively 
seen in continuous P. oceanica bordering sand, adults are 
more abundant in mosaic meadows than in continuous 
meadows bordering rock (14x) and meadows bordering 
sand (4.7x) (Fig. 6). This situation resembles that of adult 
and juvenile C. julis and might be another example of 
intraspecific competition and niche partitioning between 
adults and juveniles (Kimirei et al., 2013). 
Species such as Diplodus annularis and Symphodus 
cinereus are known to occur on bare soft bottoms in the 
vicinity of seagrasses (Bell and Harmelin-Vivien, 1983), 
where they can feed. In our study, bare sand patches 
were absent from mosaic meadows and relatively rare 
in meadows bordering rock, which might explain the 
somewhat higher abundances of D. annularis and S. 
cinereus in continuous meadows bordering sand.
"Fishes associated with Posidonia oceanica" are often 
assumed to be uniform communities with local differences 
in temperature, currents and seafloor characteristics 
responsible for variation in their structure. However, fish 
individuals continuously make choices about habitat use 
as they move through the overall landscape, and their 
decision to associate with different habitats and habitat 
arrangements also depends on spatial proximity to 
habitat relative to their current needs (e.g., food, shelter, 
mates, predation evasion). Whether suitable structured 
or unstructured habitat is available in the direct vicinity of 
seagrass in part determines the community structure of 
associated fishes. Models of seagrass habitat preference 
and conservation plans for shallow fish communities 
in the Adriatic Sea would benefit from a more realistic 
view of habitat as an intricate mosaic in which seagrass 
is embedded in many habitat types that influence 
fish function, movement and preference for seagrass 
structure.

ACKNOWLEDGMENTS

This project was partially supported by the Croatian 
National Science Foundation under the project COREBIO 
(3107), the European Union FP 7 project COCONET and 
the Croatian Ministry of Science, Education and Sports 
under the project 269-0362975-3174.



Croatian Journal of Fisheries, 2021, 79, 89-109
I. Zubak Čižmek et al. (2021): Fish communities in different P. oceanica seascape contexts

© 2021 Author(s). This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License 
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

104

UTJECAJ PROSTORNE ORGANIZACIJE ELEME-
NATA PODMORSKOG OKOLIŠA NA STRUKTURU 
ZAJEDNICA RIBA U NASELJIMA MORSKE CV-
JETNICE Posidonia oceanica U JADRANSKOM 
MORU

SAŽETAK

Naselja morske cvjetnice Posidonia oceanica igraju 
važnu ulogu u strukturiranju zajednica riba te utječu 
na taksonomsku i funkcionalnu raznolikost, brojnost i 
ponašanje riba. Relativna vrijednost naselja morskih 
cvjetnica ovisi o prostornoj organizaciji elementa 
podmorskog okoliša te dostupnosti alternativnih staništa. 
Međutim, nedovoljno je poznato koji sve čimbenici utječu 
na strukturu zajednice riba povezanih s ovom morskom 
cvjetnicom. S ciljem utvrđivanja utjecaja različite 
prostorne organizacije elementa podmorskog okoliša 
na zajednice riba, proveden je vizualni cenzus uz pomoć 
mamca u naseljima cvjetnice P. oceanica u hrvatskom 
dijelu Jadranskog mora. Utvrđen je značajan utjecaj 
različite prostorne organizacije elementa podmorskog 
okoliša na strukturu zajednice riba – u rascjepkanim 
mozaičnim naseljima u kojima se P. oceanica isprepliće s 
kamenom podlogom obraslom makro-algama zabilježena 
je značajno veća brojnost riba u odnosu na kontinuirana 
cjelovita naselja (uz sediment ili uz kamenitu obalu). U 
radu su predstavljeni dokazi da dostupnost alternativnih 
strukturiranih staništa u neposrednoj blizini naselja 
morske cvjetnice P. oceanica utječe na strukturu zajednice 
riba koje u njoj žive. Neophodno je uzeti u obzir kontekst 
prostornog rasporeda elemenata podmorskog okoliša 
kojima dominira morska cvjetnica P. oceanica prilikom 
planiranja znanstvenih istraživanja, ali i kod upravljanja 
priobalnim područjima.

Ključne riječi: morske cvjetnice, ribe, struktura zajednice, 
vizualni cenzus uz pomoć mamca
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